MTH 310 HW 2 Solutions

Jan 29, 2016

Section 2.3 Problem 1ab and 2ab

Find all units and zero divisors in \mathbb{Z}_{7} and \mathbb{Z}_{8}.
Answer. Since $1(1)=2(4)=3(5)=6(6)=1 \bmod 7$, so there are no zero divisors in \mathbb{Z}_{7} and all nonzero elements in \mathbb{Z}_{7} are units. Similarly as $1(1)=3(3)=5(5)=7(7)=$ $1 \bmod 8$ and $0=2(4)=6(4)=4(4) \bmod 8$, the units are $1,3,5,7$ and the zero divisors are $2,4,6$ (recall that zero is not a zero divisor with the general rule "you can't divide by zero"-although I didn't take points off for this).

Section 2.3, Problem 17

Prove that the product of two units in \mathbb{Z}_{n} is also a unit.
Answer. Let $a, b \in \mathbb{Z}_{n}$ be units. Then there are elements c, d such that $a c=1 \bmod n$ and $b d=1 \bmod \mathrm{n}$. This implies that $(a b)(d c)=a b d c=a(1) c=a c=1 \bmod \mathrm{n}$, so $a b$ is a unit with inverse $d c$.

Section 3.1, Problem 8

Is $\{1,-1, i,-i\}$ a subring of \mathbb{C} ?
Answer. No. Note that $1+1=2 \notin\{1,-1, i,-i\}$, so $\{1,-1, i,-i\}$ is not closed under addition and hence not a subring. (If you go on to take MTH 411, you will find that this IS a group!)

Section 2.3, Problem 14

Let $a, b, n \in \mathbb{Z}$ with $n>1$. Let $d=\operatorname{gcd}(a, n)$ and assume $d \mid b$. Prove that the equation $[a] x=[b]$ has d distinct solutions in \mathbb{Z}_{n}.
Answer. Note: This problem was not graded, but here is a solution.
Theorem 1. The solutions listed in exercise 13b are distinct.
Proof. Using the notation from 13b, assume two elements of the solutions in 13 b are equal. Then $\left[u b_{1}+k_{1} n_{1}\right]=\left[u b_{1}+k_{2} n_{1}\right]$ for some $k_{1}, k_{2} \in\{0,1, \ldots, d-1\}$. This implies that $u b_{1}+k_{1} n_{1} \equiv u b_{1}+k_{2} n_{1} \bmod n$, so n divides their difference. Specifically, $n \mid\left(n_{1}\left(k_{2}-k_{1}\right)\right)$. Then there is some $j \in \mathbb{Z}$ with $n j=\left(n_{1}\left(k_{2}-k_{1}\right)\right)$. But since $n=n_{1} d$, dj $=k_{2}-k_{1}$, so $d \mid k_{2}-k_{1}$ so $k_{1} \equiv k_{2} \bmod d$. This implies since $k_{1}, k_{2} \in\{0,1, \ldots, d-1\}$, they must be equal.

Theorem 2. If $x=[r]$ is any solution of $[a] x=b,[r]=\left[u b_{1}+k n_{1}\right]$ for some integer $k \in\{0,1, \ldots, d-1\}$.

Proof. We have that $a r \equiv b \equiv a u b_{1} \bmod \mathrm{n}$, so n divides their difference, namely $n \mid(a(r-$ $\left.u b_{1}\right)$). Thus there is some $j \in \mathbb{Z}$ with $n j=a\left(r-u b_{1}\right)$. Dividing both sides of this equation by d, we obtain $j n_{1}=a_{1}\left(r-u b_{1}\right)$, so $n_{1} \mid\left(a_{1}\left(r-u b_{1}\right)\right)$. We have that the $\operatorname{gcd}\left(a_{1}, n_{1}\right)=\operatorname{gcd}(a, n) / d=1$ so by theorem $1.4 n_{1} \mid\left(r-u b_{1}\right)$ so there is some $k \in \mathbb{Z}$ with $k n_{1}=r-u b_{1}$, so adding $u b_{1}$ to both sides of this equation proves our claim.

