MTH 310 HW 2 Solutions

Jan 29, 2016

Section 2.3 Problem 1ab and 2ab

Find all units and zero divisors in \mathbb{Z}_7 and \mathbb{Z}_8 .

Answer. Since $1(1) = 2(4) = 3(5) = 6(6) = 1 \mod 7$, so there are no zero divisors in \mathbb{Z}_7 and all nonzero elements in \mathbb{Z}_7 are units. Similarly as $1(1) = 3(3) = 5(5) = 7(7) = 1 \mod 8$ and $0 = 2(4) = 6(4) = 4(4) \mod 8$, the units are 1,3,5,7 and the zero divisors are 2,4,6 (recall that zero is not a zero divisor with the general rule "you can't divide by zero"-although I didn't take points off for this).

Section 2.3, Problem 17

Prove that the product of two units in \mathbb{Z}_n is also a unit.

Answer. Let $a, b \in \mathbb{Z}_n$ be units. Then there are elements c, d such that $ac = 1 \mod n$ and $bd = 1 \mod n$. This implies that $(ab)(dc) = abdc = a(1)c = ac = 1 \mod n$, so ab is a unit with inverse dc.

Section 3.1, Problem 8

Is $\{1, -1, i, -i\}$ a subring of \mathbb{C} ?

Answer. No. Note that $1 + 1 = 2 \notin \{1, -1, i, -i\}$, so $\{1, -1, i, -i\}$ is not closed under addition and hence not a subring. (If you go on to take MTH 411, you will find that this IS a group!)

Section 2.3, Problem 14

Let $a, b, n \in \mathbb{Z}$ with n > 1. Let d = gcd(a, n) and assume d|b. Prove that the equation [a]x = [b] has d distinct solutions in \mathbb{Z}_n .

Answer. Note: This problem was not graded, but here is a solution.

Theorem 1. The solutions listed in exercise 13b are distinct.

Proof. Using the notation from 13b, assume two elements of the solutions in 13b are equal. Then $[ub_1 + k_1n_1] = [ub_1 + k_2n_1]$ for some $k_1, k_2 \in \{0, 1, ..., d - 1\}$. This implies that $ub_1 + k_1n_1 \equiv ub_1 + k_2n_1 \mod n$, so n divides their difference. Specifically, $n|(n_1(k_2 - k_1))$. Then there is some $j \in \mathbb{Z}$ with $nj = (n_1(k_2 - k_1))$. But since $n = n_1d$, $dj = k_2 - k_1$, so $d|k_2 - k_1$ so $k_1 \equiv k_2 \mod d$. This implies since $k_1, k_2 \in \{0, 1, ..., d - 1\}$, they must be equal.

Theorem 2. If x = [r] is any solution of $[a]x = b, [r] = [ub_1 + kn_1]$ for some integer $k \in \{0, 1, ..., d-1\}$.

Proof. We have that $ar \equiv b \equiv aub_1 \mod n$, so n divides their difference, namely $n|(a(r - ub_1))$. Thus there is some $j \in \mathbb{Z}$ with $nj = a(r - ub_1)$. Dividing both sides of this equation by d, we obtain $jn_1 = a_1(r - ub_1)$, so $n_1|(a_1(r - ub_1)))$. We have that the $gcd(a_1, n_1) = gcd(a, n)/d = 1$ so by theorem 1.4 $n_1|(r - ub_1)$ so there is some $k \in \mathbb{Z}$ with $kn_1 = r - ub_1$, so adding ub_1 to both sides of this equation proves our claim. \Box